14,106 research outputs found

    Application of high-resolution melting for variant scanning in chloroplast gene atpB and atpB-rbcL intergenic spacer region of Crucifer species

    Get PDF
    High-resolution melting (HRM) analysis is a rapid and sensitive method for single nucleotide polymorphism (SNP) analysis. In this study, a novel HRM assay was carried out to detect SNPs in the chloroplast gene atpB which encodes the beta subunit of the ATP synthase and atpB upstream intergenic region. The polymorphisms of the two fragments in intertribal samples from the Cruciferae family and within the species of Brassica napus were detected. Based on this results, we found that HRM were able to determine over 90% of the variants which included single or multiple variants and insertion-deletion polymorphisms (INDELs) and rendered possible genotyping of more closely spaced polymorphisms, although there were several false positives (FPs) and misclassification. Six haplotypes were identified in the intertribal materials. The analysis of 90 B. napus found five variation types and the variations were all located in the intergenic region. In conclusion, HRM analysis is a closed tube assay that is easy to perform and is a more effective approach to identify variant of chloroplast genes. This study will facilitate further functional investigations into the role of chloroplast genes in photosynthesis, phylogeny and molecular evolution.Key words: atpB gene, chloroplast genome, crucifer, high-resolution melt curve analysis, SNP, INDEL

    Spin-flip reflection at the normal metal-spin superconductor interface

    Full text link
    We study spin transport through a normal metal-spin superconductor junction. A spin-flip reflection is demonstrated at the interface, where a spin-up electron incident from the normal metal can be reflected as a spin-down electron and the spin 2×/22\times \hbar/2 will be injected into the spin superconductor. When the (spin) voltage is smaller than the gap of the spin superconductor, the spin-flip reflection determines the transport properties of the junction. We consider both graphene-based (linear-dispersion-relation) and quadratic-dispersion-relation normal metal-spin superconductor junctions in detail. For the two-dimensional graphene-based junction, the spin-flip reflected electron can be along the specular direction (retro-direction) when the incident and reflected electron locates in the same band (different bands). A perfect spin-flip reflection can occur when the incident electron is normal to the interface, and the reflection coefficient is slightly suppressed for the oblique incident case. As a comparison, for the one-dimensional quadratic-dispersion-relation junction, the spin-flip reflection coefficient can reach 1 at certain incident energies. In addition, both the charge current and the spin current under a charge (spin) voltage are studied. The spin conductance is proportional to the spin-flip reflection coefficient when the spin voltage is less than the gap of the spin superconductor. These results will help us get a better understanding of spin transport through the normal metal-spin superconductor junction.Comment: 11 pages, 9 figure

    Ginzburg-Landau-type theory of non-polarized spin superconductivity

    Full text link
    Since the concept of spin superconductor was proposed, all the related studies concentrate on spin-polarized case. Here, we generalize the study to spin-non-polarized case. The free energy of non-polarized spin superconductor is obtained, and the Ginzburg-Landau-type equations are derived by using the variational method. These Ginzburg-Landau-type equations can be reduced to the spin-polarized case when the spin direction is fixed. Moreover, the expressions of super linear and angular spin currents inside the superconductor are derived. We demonstrate that the electric field induced by super spin current is equal to the one induced by equivalent charge obtained from the second Ginzburg-Landau-type equation, which shows self-consistency of our theory. By applying these Ginzburg-Landau-type equations, the effect of electric field on the superconductor is also studied. These results will help us get a better understanding of the spin superconductor and the related topics such as Bose-Einstein condensate of magnons and spin superfluidity.Comment: 9 pages, 5 figure

    Magnetic control of the pair creation in spatially localized supercritical fields

    Get PDF
    We examine the impact of a perpendicular magnetic field on the creation mechanism of electron-positron pairs in a supercritical static electric field, where both fields are localized along the direction of the electric field. In the case where the spatial extent of the magnetic field exceeds that of the electric field, quantum field theoretical simulations based on the Dirac equation predict a suppression of pair creation even if the electric field is supercritical. Furthermore, an arbitrarily small magnetic field outside the interaction zone can bring the creation process even to a complete halt, if it is sufficiently extended. The mechanism for this magnetically induced complete shutoff can be associated with a reopening of the mass gap and the emergence of electrically dressed Landau levels

    Optimal manufacturing/remanufacturing policies with fixed investment for the underdeveloped remanufacturing system

    Get PDF
    © 2017, Strojarski Facultet. All rights reserved. In an underdeveloped remanufacturing system, poor infrastructure and low technical level impede further development of remanufacturing. To overcome this obstacle, a huge amount of fixed investment is required to improve the remanufacturing system. However, this investment inevitably influences the manufacturer’s manufacturing/remanufacturing decision-making economically. The relationship between fixed investment and recycling ratio was investigated, and the two- and multi-period manufacturing/remanufacturing mixed optimization models were developed. Based on the Karush-Kuhn-Tucker (KKT) conditions, the optimal manufacturing/remanufacturing and fixed investment policies were obtained in closed-form expressions. Moreover, the influences of the fixed investment were analysed. Results show that the optimal policies are significantly influenced by the degree of underdevelopment of the remanufacturing system. When the remanufacturing system is underdeveloped, the manufacturer shows a lack of enthusiasm in remanufacturing, thereby resulting in the decrease of the investment and the recycling ratio. The manufacturer raises the sale price to alleviate the loss caused by fixed investment, but the total manufacturing quantity and profit decrease. In the multi-period case, the manufacturer gradually increases the investment for continuously improving the remanufacturing system to increase the recycling ratio and obtain additional profits from remanufacturing. The proposed models can effectively provide the reference for determining the reasonable manufacturing/remanufacturing and fixed investment policies in the underdeveloped remanufacturing system
    corecore